Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Bioorg Chem ; 147: 107380, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38636432

RESUMEN

The COVID-19 pandemic continues to pose a threat to global health, and sounds the alarm for research & development of effective anti-coronavirus drugs, which are crucial for the patients and urgently needed for the current epidemic and future crisis. The main protease (Mpro) stands as an essential enzyme in the maturation process of SARS-CoV-2, playing an irreplaceable role in regulating viral RNA replication and transcription. It has emerged as an ideal target for developing antiviral agents against SARS-CoV-2 due to its high conservation and the absence of homologous proteases in the human body. Among the SARS-CoV-2 Mpro inhibitors, non-peptidic compounds hold promising prospects owing to their excellent antiviral activity and improved metabolic stability. In this review, we offer an overview of research progress concerning non-peptidic SARS-CoV-2 Mpro inhibitors since 2020. The efforts delved into molecular structures, structure-activity relationships (SARs), biological activity, and binding modes of these inhibitors with Mpro. This review aims to provide valuable clues and insights for the development of anti-SARS-CoV-2 agents as well as broad-spectrum coronavirus Mpro inhibitors.

2.
Toxicol Appl Pharmacol ; 484: 116842, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38307257

RESUMEN

Arenobufagin (ArBu) is a natural monomer extracted and isolated from the secretion of the Chinese toad, also known as toad venom. This compound exerts anti-tumor effects by promoting apoptosis in tumor cells, inhibiting tumor angiogenesis, and preventing the invasion and migration of tumor cells. However, their impact on ferroptosis in tumor cells has yet to be fully confirmed. In this study, we established a subcutaneous transplant tumor model in nude mice to investigate the inhibitory effect of ArBu on gastric cancer cells (MGC-803) and the safety of drug delivery. in vitro experiments, we screened the most sensitive cancer cell lines using the MTT method and determined the response of ArBu to cell death. Use flow cytometry to measure cytoplasmic and lipid reactive oxygen species (ROS) levels. Determine the expression levels of ferritin-related proteins through Western blot experiments. In addition, a MGC-803 cell model overexpressing Nrf2 was created using lentiviral transfection to investigate the role of ArBu in inducing ferroptosis in cancer cells. Our research findings indicate that ArBu inhibits the proliferation of MGC-803 cells and is linked to ferroptosis. In summary, our research findings indicate that ArBu is a potential anti-gastric cancer drug that can induce ferroptosis in human cancer cells through the Nrf2/SLC7A11/GPX4 pathway.


Asunto(s)
Bufanólidos , Ferroptosis , Neoplasias Gástricas , Humanos , Animales , Ratones , Neoplasias Gástricas/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/genética , Ratones Desnudos , Especies Reactivas de Oxígeno
3.
Toxicol Appl Pharmacol ; 483: 116800, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38219984

RESUMEN

Nasopharyngeal carcinoma, a malignant tumor prevalent in southeast Asia and north Africa, still lacks effective treatment. Esketamine, an N-methyl-D-aspartatic acid (NMDA) receptor (NMDAR) antagonist, is widely used in clinical anesthesia. Emerging evidence suggests that esketamine plays an important role in inhibiting tumor cell activity. However, the underlying mechanisms of esketamine on nasopharyngeal carcinoma remain unknown. In this study, we found that esketamine inhibited the proliferation and migration of nasopharyngeal carcinoma cells. Mechanically, transcriptome sequencing and subsequent verification experiments revealed that esketamine promoted the apoptosis of nasopharyngeal carcinoma cells through endoplasmic reticulum stress PERK/ATF4/CHOP signaling pathway mediated by NMDAR. Additionally, when combined with esketamine, the inhibitory effect of cisplatin on the proliferation of nasopharyngeal carcinoma cells was significantly enhanced. These findings provide new insights into future anti-nasopharyngeal carcinoma clinical strategies via targeting the NMDAR/PERK/CHOP axis alone or in combination with cisplatin.


Asunto(s)
Ketamina , Neoplasias Nasofaríngeas , eIF-2 Quinasa , Humanos , eIF-2 Quinasa/metabolismo , Cisplatino/farmacología , Carcinoma Nasofaríngeo/tratamiento farmacológico , Apoptosis , Neoplasias Nasofaríngeas/tratamiento farmacológico , Estrés del Retículo Endoplásmico , Factor de Transcripción CHOP/genética , Factor de Transcripción CHOP/metabolismo , Factor de Transcripción Activador 4/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-37906274

RESUMEN

Paris polyphylla saponin II (PPII) has good biological activity in inhibiting tumor angiogenesis. However, the mechanism of its action is still unclear. This study first observed the inhibitory effect of PPII on cervical cancer cells (Hela) through the establishment of MTT and nude mouse subcutaneous transplantation tumor models. Afterwards, then, we collected Hela cell supernatant for culturing HUVEC cells and treated it with PPII. Observe the invasion, migration, and lumen formation ability of drugs through Transwell, cell scratch test, and angiogenesis experiment. MDC staining was used to observe positive staining in the perinuclear area, AO staining was used to observe acidic areas, and transmission electron microscopy staining was used to observe ultrastructure and autophagy. In addition, the effects of PPII on autophagy- and angiogenesis-related protein expression were detected by Western blotting and quantitative reverse transcriptase polymerase chain reaction. Finally, HUVECs were treated with autophagy inhibitors 3-MA, CQ, and PI3K inhibitor LY294002, respectively. The results showed that the autophagy level of cells treated with PPII was significantly increased. In addition, adding autophagy inhibitors can effectively inhibit angiogenesis in cervical cancer. Further research suggests that PPII induces autophagy in HUVEC cells by regulating the PI3K/AKT/mTOR signaling pathway, thereby affecting angiogenesis and inhibiting Hela cell proliferation, lumen formation, invasion, and migration.

5.
Animals (Basel) ; 13(16)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37627443

RESUMEN

This study was designed to examine the protective effects of the extract of mulberry (Morus alba L.) leaves (EML) on crucian carp (Carassius auratus) against a high stocking density, Cu exposure and trichlorfon exposure, which adversely impact fish growth performance, feed intake and fish locomotion. High stocking densities decreased the activities of amylase, lipase, trypsin, Na+/K+-ATPase and alkaline phosphatase (AKP), and increased the content of malonaldehyde (MDA) in fish digestive organs, indicating an impairment of the digestive function and a disturbance of the antioxidant status. Cu exposure increased the activities of glutamate-oxaloacetate transaminase (GOT) and glutamate-pyruvate transaminase (GPT) in fish digestive organs, suggesting the activation of amino acid metabolism. Furthermore, trichlorfon exposure reduced the activities of lactate dehydrogenase (LDH), glutathione reductase (GR), GOT and GPT, and the capacities of the anti-superoxide anion (ASA) and anti-hydroxyl radical (AHR) in fish muscles, indicating a disruption of the bioenergetic homeostasis and antioxidant status. Our present study indicates that dietary EML supplementation relieved the detrimental effects induced by these stressors.

6.
Mol Plant Pathol ; 24(9): 1033-1046, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37448165

RESUMEN

Lipase is involved in lipid hydrolysis, which is related to nematodes' energy reserves and stress resistance. However, the role of lipases in Bursaphelenchus xylophilus, a notorious plant-parasitic nematode responsible for severe damage to pine forest ecosystems, remains largely obscure. Here, we characterized a class III lipase as a candidate effector and named it BxLip-3. It was transcriptionally up-regulated in the parasitic stages of B. xylophilus and specifically expressed in the oesophageal gland cells and the intestine. In addition, BxLip-3 suppressed cell death triggered by the pathogen-associated molecular patterns PsXEG1 and BxCDP1 in Nicotiana benthamiana, and its Lipase-3 domain is essential for immunosuppression. Silencing of the BxLip-3 gene resulted in a delay in disease onset and increased the activity of antioxidant enzymes and the expression of pathogenesis-related (PR) genes. Plant chitinases are thought to be PR proteins involved in the defence system against pathogen attack. Using yeast two-hybrid and co-immunoprecipitation assays, we identified two class I chitinases in Pinus thunbergii, PtChia1-3 and PtChia1-4, as targets of BxLip-3. The expression of these two chitinases was up-regulated during B. xylophilus inoculation and inhibited by BxLip-3. Overall, this study illustrated that BxLip-3 is a crucial virulence factor that plays a critical role in the interaction between B. xylophilus and host pine.


Asunto(s)
Quitinasas , Pinus , Tylenchida , Animales , Xylophilus , Ecosistema , Quitinasas/genética , Pinus/parasitología , Tylenchida/genética , Enfermedades de las Plantas/parasitología
7.
RSC Adv ; 13(14): 9555-9562, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36968029

RESUMEN

Ti3C2T x (T x denotes terminal group), resulting from two-dimensional (2D) Mxenes, has attracted significant attention due to energy shortage and catalysis. Herein, we present reproducible 2D Ti3C2T x obtained from commercial bulk Ti3AlC2 using a cost-effective and environment-friendly approach. Both etching and exfoliation processes were investigated with the rational selection of etchant, reaction time and exfoliation solution. The hydrofluoric acid (HF) etchant plays a key role in the production of 2D Ti3C2T x and therefore the recycling of HF is addressed for reproducible 2D MXenes. Hazardous HF waste was also neutralized via CaF2 precipitation according to the regulations for HF sewage. Equally important, dimethyl sulfoxide (DMSO) was employed to promote the exfoliation of multilayer Ti3C2T x MXenes into Ti3C2T x nanosheets in an aqueous solution, which can couple with terminal groups and protect the exfoliated single-layers from recombination, facilitating interface passivation toward perovskite solar devices. The resulting perovskite solar cell exhibited striking improvements to achieve champion efficiency, with a PCE of 19.11%, which accounts for ∼9% enhancement as compared to pristine devices.

8.
Protein Cell ; 14(1): 37-50, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36726760

RESUMEN

The twenty-first century has already recorded more than ten major epidemics or pandemics of viral disease, including the devastating COVID-19. Novel effective antivirals with broad-spectrum coverage are urgently needed. Herein, we reported a novel broad-spectrum antiviral compound PAC5. Oral administration of PAC5 eliminated HBV cccDNA and reduced the large antigen load in distinct mouse models of HBV infection. Strikingly, oral administration of PAC5 in a hamster model of SARS-CoV-2 omicron (BA.1) infection significantly decreases viral loads and attenuates lung inflammation. Mechanistically, PAC5 binds to a pocket near Asp49 in the RNA recognition motif of hnRNPA2B1. PAC5-bound hnRNPA2B1 is extensively activated and translocated to the cytoplasm where it initiates the TBK1-IRF3 pathway, leading to the production of type I IFNs with antiviral activity. Our results indicate that PAC5 is a novel small-molecule agonist of hnRNPA2B1, which may have a role in dealing with emerging infectious diseases now and in the future.


Asunto(s)
Antivirales , Virus de la Hepatitis B , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B , SARS-CoV-2 , Animales , Ratones , Antivirales/farmacología , COVID-19 , Interferón Tipo I/metabolismo , SARS-CoV-2/efectos de los fármacos , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/antagonistas & inhibidores
9.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(6): 902-911, 2023 Dec 30.
Artículo en Chino | MEDLINE | ID: mdl-38173100

RESUMEN

Objective To analyze the clinical characteristics of collagenous gastritis (CG) and provide evidence for the precise diagnosis and treatment of CG.Methods Published case reports and case series were collected from PubMed,CNKI,and Wanfang Med Online with the key words of collagenous gastritis,collagenous gastroduodenitis,collagenous gastrointestinal diseases,and gastric mucosal nodules.The demographic and clinical information of each case was collected.Results According to the extent of collagen deposition in the digestive tract,94 CG cases included in this study were assigned into upper digestive tract (UDT)-CG,total digestive tract (TDT)-CG and other groups.The UDT-CG group included 52 cases (57.69% females and 42.31% males) with a median age of 14.50 (11.00,25.75) years old.There were 17 cases in the TDT-CG group,including 70.59% females and 29.41% males,with a median age of 15.00 (9.50,48.50) years old.The other group contained 25 cases,(64.00% females and 36.00% males) with a median age of 25.00 (15.50,59.50) years old.The main clinical manifestations in the UDT-CG group were anemia (59.62%) and diarrhea (17.31%),and those in the TDT-CG group were anemia (29.41%) and diarrhea (94.12%).The nodular appearance of gastric mucosa was observed in 75.00% cases in the UDT-CG group and 35.29% cases in the TDT-CG group.In the initial treatment,symptomatic therapy and hormonal therapy respectively relieved the symptoms in 75.00% (30/40) and 100% (3/3) cases in the UDT-CG group and 57.14% (4/7) and 83.33% (5/6) cases in the TDT-CG group.In the retreatment,symptomatic therapy and hormone therapy respectively achieved the remission rates of 100.00% (3/3) and 88.89% (8/9) in the UDT-CG group and 80.00% (4/5) and 66.67% (2/3) in the TDT-CG group.Conclusions CG,a rare disease of gastric collagen deposition,mainly occurs in young patients,and females are more susceptible than males.The clinical manifestations of CG are nonspecific,and anemia,abdominal pain,diarrhea,weight loss,and gastrointestinal bleeding are the common symptoms of CG.Nodular appearance of gastric mucosa is a relatively specific endoscopic feature of CG.There is no standardized treatment for CG.Symptomatic treatment is commonly adopted to improve the quality of life of the patients,and hormones can be added when necessary.


Asunto(s)
Anemia , Gastritis , Masculino , Femenino , Humanos , Calidad de Vida , Gastritis/diagnóstico , Mucosa Gástrica , Colágeno , Anemia/etiología , Diarrea/complicaciones
10.
Vet Sci ; 11(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38275917

RESUMEN

The study explored the effects of Angelica sinensis extract (AsE) on oxidative lesions and apoptosis in branchiae and red blood corpuscles in hypoxia-reoxygenation (HR) and Cu-treated carp (Cyprinus carpio var. Jian). After feeding trial for 30 days, the carp were exposed to HR and CuSO4. The results indicated that dietary AsE increased the durative time, decreased the oxygen consumption rate, suppressed ROS generation and cellular component oxidation, decreased enzymatic antioxidant activity and reduced glutathione (GSH) levels in red blood corpuscles and branchiae in carp under hypoxia. Moreover, dietary AsE avoided the loss of Na+,K+-ATPase, metabolic and antioxidant enzyme activities, ROS generation and cellular component oxidation, as well as the increase in caspase-8, 9, and 3 activities in the branchiae of the carp and inhibited ROS generation. It furthermore avoided the loss of Na+,K+-ATPase and metabolic enzyme activities, the decrease in GSH levels and hemoglobin content, the increase in the activities of caspase-8, 9, and 3 and the increase in the levels of cytochrome c and phosphatidylserine exposure in the red blood corpuscles of Cu-exposed carp. The present results suggested that dietary AsE improved hypoxia tolerance and inhibited HR or Cu-triggered oxidative lesions and apoptosis. Therefore, AsE can be utilized as a natural inhibitor of Cu and HR stress in fish.

11.
Protein & Cell ; (12): 37-50, 2023.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-971609

RESUMEN

The twenty-first century has already recorded more than ten major epidemics or pandemics of viral disease, including the devastating COVID-19. Novel effective antivirals with broad-spectrum coverage are urgently needed. Herein, we reported a novel broad-spectrum antiviral compound PAC5. Oral administration of PAC5 eliminated HBV cccDNA and reduced the large antigen load in distinct mouse models of HBV infection. Strikingly, oral administration of PAC5 in a hamster model of SARS-CoV-2 omicron (BA.1) infection significantly decreases viral loads and attenuates lung inflammation. Mechanistically, PAC5 binds to a pocket near Asp49 in the RNA recognition motif of hnRNPA2B1. PAC5-bound hnRNPA2B1 is extensively activated and translocated to the cytoplasm where it initiates the TBK1-IRF3 pathway, leading to the production of type I IFNs with antiviral activity. Our results indicate that PAC5 is a novel small-molecule agonist of hnRNPA2B1, which may have a role in dealing with emerging infectious diseases now and in the future.


Asunto(s)
Animales , Ratones , Antivirales/farmacología , COVID-19 , Virus de la Hepatitis B , Interferón Tipo I/metabolismo , SARS-CoV-2/efectos de los fármacos , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/antagonistas & inhibidores
12.
Nutrients ; 14(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35956351

RESUMEN

Increasing hepcidin expression is a vital factor in iron homeostasis imbalance among patients with chronic kidney disease (CKD). Recent studies have elucidated that abnormal serum steroid levels might cause the elevation of hepcidin. Glycochenodeoxycholate (GCDCA), a steroid, is significantly elevated in patients with CKD. However, the correlation between GCDCA and hepcidin has not been elucidated. Decreased serum iron levels and increased hepcidin levels were both detected in patients with CKD in this study. Additionally, the concentrations of GCDCA in nephropathy patients were found to be higher than those in healthy subjects. HepG2 cells were used to investigate the effect of GCDCA on hepcidin in vitro. The results showed that hepcidin expression increased by nearly two-fold against control under 200 µM GCDCA treatment. The phosphorylation of SMAD1/5/8 increased remarkably, while STAT3 and CREBH remained unchanged. GCDCA triggered the expression of farnesoid X receptor (FXR), followed with the transcription and expression of both BMP6 and ALK3 (upward regulators of SMAD1/5/8). Thus, GCDCA is a potential regulator for hepcidin, which possibly acts by triggering FXR and the BMP6/ALK3-SMAD signaling pathway. Furthermore, 40 C57/BL6 mice were treated with 100 mg/kg/d, 200 mg/kg/d, and 300 mg/kg/d GCDCA to investigate its effect on hepcidin in vivo. The serum level of hepcidin increased in mice treated with 200 mg/kg/d and 300 mg/kg/d GCDCA, while hemoglobin and serum iron levels decreased. Similarly, the FXR-mediated SMAD signaling pathway was also responsible for activating hepcidin in liver. Overall, it was concluded that GCDCA could induce the expression of hepcidin and reduce serum iron level, in which FXR activation-related SMAD signaling was the main target for GCDCA. Thus, abnormal GCDCA level indicates a potential risk of iron homeostasis imbalance.


Asunto(s)
Hepcidinas , Insuficiencia Renal Crónica , Animales , Ácido Glicoquenodesoxicólico , Hepcidinas/genética , Hepcidinas/metabolismo , Homeostasis , Humanos , Hierro , Ratones , Regulación hacia Arriba
13.
Front Plant Sci ; 13: 937473, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35991456

RESUMEN

The migratory plant-parasitic nematode Bursaphelenchus xylophilus is the pathogen of the pine wilt disease (PWD), causing serious damage to pine forests in China. During the process of plant resistance to multiple pathogens, plant immunity plays a key role. In this current study, the pathogen-associated molecular pattern (PAMP) BxCDP1 in B. xylophilus has been identified, but the host target protein of BxCDP1 and its key amino acid region inducing the plant immunity have yet to be elucidated. We found that BxCDP1 could trigger superoxide production, H2O2 production, and callose deposits. A RING-H2 finger protein 1 (RHF1) of Pinus thunbergii was screened and characterized as a target protein of BxCDP1 by yeast two-hybrid and co-immunoprecipitation (Co-IP). Moreover, two peptides (namely M9 and M16) proved to be key regions of BxCDP1 to induce PAMP-triggered immunity (PTI) in Nicotiana benthamiana, which also induced the expression of pathogenesis-related (PR) genes (PtPR-3, PtPR-4, and PtPR-5) in P. thunbergii and enhanced the resistance of the host to B. xylophilus. These results indicate that BxCDP1 plays a critical role in the interaction between B. xylophilus and P. thunbergii, and both peptides M9 and M16 have the potential to be developed and utilized as immune inducers of pines against B. xylophilus in future.

14.
Life (Basel) ; 12(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35743814

RESUMEN

Lipid metabolism is involved in the regulation of numerous cellular processes, such as cell growth, proliferation, differentiation, survival, apoptosis, inflammation, movement, membrane homeostasis, chemotherapy response, and drug resistance. Reprogramming of lipid metabolism is a typical feature of malignant tumors. In a variety of cancers, fat uptake, storage and fat production are up-regulated, which in turn promotes the rapid growth, invasion, and migration of tumors. This paper systematically summarizes the key signal transduction pathways and molecules of lipid metabolism regulating tumors, and the role of lipid metabolism in programmed cell death. In conclusion, understanding the potential molecular mechanism of lipid metabolism and the functions of different lipid molecules may facilitate elucidating the mechanisms underlying the occurrence of cancer in order to discover new potential targets for the development of effective antitumor drugs.

15.
Artículo en Inglés | MEDLINE | ID: mdl-35656458

RESUMEN

Traditional clinical named entity recognition methods fail to balance the effectiveness of feature extraction of unstructured text and the complexity of neural network models. We propose a model based on ALBERT and a multihead attention (MHA) mechanism to solve this problem. Structurally, the model first obtains character-level word embeddings through the ALBERT pretraining language model, then inputs the word embeddings into the iterated dilated convolutional neural network model to quickly extract global semantic information, and decodes the predicted labels through conditional random fields to obtain the optimal label sequence. Also, we apply the MHA mechanism to capture intercharacter dependencies from multiple aspects. Furthermore, we use the RAdam optimizer to boost the convergence speed and improve the generalization ability of our model. Experimental results show that our model achieves an F1 score of 85.63% on the CCKS-2019 dataset-an increase of 4.36% compared to the baseline model.

16.
Int J Mol Sci ; 23(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35742858

RESUMEN

Bursaphelenchus xylophilus is the most economically important species of migratory plant-parasitic nematodes (PPNs) and causes severe damage to forestry in China. The successful infection of B. xylophilus relies on the secretion of a repertoire of effector proteins. The effectors, which suppress the host pine immune response, are key to the facilitation of B. xylophilus parasitism. An exhaustive list of candidate effectors of B. xylophilus was predicted, but not all have been identified and characterized. Here, an effector, named BxSCD3, has been implicated in the suppression of host immunity. BxSCD3 could suppress pathogen-associated molecular patterns (PAMPs) PsXEG1- and INF1-triggered cell death when it was secreted into the intracellular space in Nicotiana benthamiana. BxSCD3 was highly up-regulated in the early infection stages of B. xylophilus. BxSCD3 does not affect B. xylophilus reproduction, either at the mycophagous stage or the phytophagous stage, but it contributes to the virulence of B. xylophilus. Moreover, BxSCD3 significantly influenced the relative expression levels of defense-related (PR) genes PtPR-3 and PtPR-6 in Pinus thunbergii in the early infection stage. These results suggest that BxSCD3 is an important toxic factor and plays a key role in the interaction between B. xylophilus and host pine.


Asunto(s)
Pinus , Rabdítidos , Tylenchida , Animales , Pinus/parasitología , Enfermedades de las Plantas/parasitología , Tylenchida/genética , Virulencia/genética , Xylophilus
18.
BMC Plant Biol ; 22(1): 216, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35473472

RESUMEN

BACKGROUND: Bursaphelenchus xylophilus is the causal agent of pine wilt disease (PWD) that has caused enormous ecological and economic losses in China. The mechanism in the interaction between nematodes and pine remains unclear. Plant parasitic nematodes (PPNs) secrete effectors into host plant tissues. However, it is poorly studied that role of effector in the infection of pine wood nematode (PWN). RESULTS: We cloned, characterized and functionally validated the B. xylophilus effector BxML1, containing an MD-2-related lipid-recognition (ML) domain. This protein inhibits immune responses triggered by the molecular pattern BxCDP1 of B. xylophilus. An insitu hybridization assay demonstrated that BxML1 was expressed mainly in the dorsal glands and intestine of B. xylophilus. Subcellular localization analysis showed the presence of BxML1 in the cytoplasm and nucleus. Furthermore, number of B. xylophilus and morbidity of pine were significantly reduced in Pinus thunbergii infected with B. xylophilus when BxML was silenced. Using yeast two-hybrid (Y2H) and coimmunoprecipitation (CoIP) assays, we found that the BxML1 interacts with cyclophilin protein PtCyP1 in P. thunbergii. CONCLUSIONS: This study illustrated that BxML1 plays a critical role in the B. xylophilus-plant interaction and virulence of B. xylophilus.


Asunto(s)
Pinus , Tylenchida , Animales , Ciclofilinas/genética , Pinus/parasitología , Virulencia , Xylophilus
19.
Chem Sci ; 13(6): 1808-1814, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35282638

RESUMEN

A general and highly efficient method for asymmetric sequential hydrogenation of α,ß-unsaturated ketones has been developed by using an iridium/f-Ampha complex as the catalyst, furnishing corresponding chiral alcohols with two contiguous stereocenters in high yields with excellent diastereo- and enantioselectivities (up to 99% yield, >20 : 1 dr and >99% ee). Control experiments indicated that the C[double bond, length as m-dash]C and C[double bond, length as m-dash]O bonds of the enones were hydrogenated sequentially, and the final stereoselectivities were determined by the dynamic kinetic resolution of ketones. Moreover, DFT calculations revealed that an outer sphere pathway was involved in both reduction of C[double bond, length as m-dash]C and C[double bond, length as m-dash]O bonds of enones. The synthetic utility of this method was demonstrated by a gram-scale reaction with very low catalyst loading (S/C = 20 000) and a concise synthetic route to key chiral intermediates of the antiasthmatic drug CP-199,330.

20.
Chem Sci ; 13(5): 1390-1397, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35222923

RESUMEN

While chiral allylic organophosphorus compounds are widely utilized in asymmetric catalysis and for accessing bioactive molecules, their synthetic methods are still very limited. We report the development of asymmetric nickel/Brønsted acid dual-catalyzed hydrophosphinylation of 1,3-dienes with phosphine oxides. This reaction is characterized by an inexpensive chiral catalyst, broad substrate scope, and high regio- and enantioselectivity. This study allows the construction of chiral allylic phosphine oxides in a highly economic and efficient manner. Preliminary mechanistic investigations suggest that the 1,3-diene insertion into the chiral Ni-H species is a highly regioselective process and the formation of the chiral C-P bond is an irreversible step.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...